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We study the 3-state square-lattice Potts antiferromagnet at zero temperature
by a Monte Carlo simulation using the Wang-Swendsen-Kotecky cluster algo-
rithm, on lattices up to 1024 x 1024. We confirm the critical exponents predicted
by Burton and Henley based on the height representation of this model.
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1. INTRODUCTION

Antiferromagnetic Potts models(1,2,3) are much less well understood than
their ferromagnetic counterparts. One reason for this is that the behavior
depends strongly on the microscopic lattice structure, in contrast to the
universality typically enjoyed by ferromagnets. As a result, many basic
questions have to be investigated case-by-case: Is there a phase transition
at finite temperature, and if so, of what order? What is the nature of the
low-temperature phase? If there is a critical point, what are the critical
exponents and the universality classes? Can these exponents be understood
(for two-dimensional models) in terms of conformal field theory?

One thing is known rigorously:(4,5) for q large enough (how large
depends on the lattice in question), the antiferromagnetic q-state Potts
model has a unique infinite-volume Gibbs measure and exponential decay



of correlations at all temperatures, including zero temperature: the system is
disordered as a result of the large ground-state entropy.3 However, for
smaller values of q, phase transitions can and do occur. One expects that
for each lattice 3? there will be a value qc(&) such that

(a) For q>qc(y) the model has exponential decay of correlations
uniformly at all temperatures, including zero temperature.

(b) For q = qc(<£) the model has a critical point at zero temperature.

(c) For q<q c (y ) any behavior is possible. Often (though not
always) the model has a phase transition at nonzero temperature, which
may be of either first or second order.

The problem, for each lattice, is to find qc(^f) and to determine the precise
behavior for each q < q c ( < £ ) .

For the common two-dimensional lattices, strong theoretical argu-
ments4—which, however, fall short of a rigorous proof—yield the following
predictions for q c ( 5 f ) :

Monte Carlo simulations have confirmed numerically that the 3-state
square-lattice model has a zero-temperature critical point,(6,7) and that the
4-state square-lattice model(6,7) and the 3-state hexagonal-lattice model(8,9)

are non-critical uniformly down to zero temperature.5

Two-dimensional models with zero-temperature critical points are of
particular interest, as they can in most cases be mapped onto a "height" (or

3 This behavior has been proven for q > 2r on any lattice of maximum coordination num-
ber r;(4,5) it has also been proven for q>4 on the hexagonal lattice, q>6 on the Kagome
lattice, q>7 on the square lattice, and q>11 on the triangular lattice.(5) However, these
bounds are presumably not sharp: see equation ( 1 . 1 ) below.

4 Summarized in the introduction of ref. 5.
5 The Monte Carlo simulations of the 3-state hexagonal-lattice model reported in ref. 8 give

no evidence of any first-order phase transition as the temperature is varied from infinity to
zero, nor do they seem to exhibit any critical slowing-down in either the Metropolis or a
cluster algorithm as the temperature tends to zero. This behavior is completely consistent
with the theoretical prediction that the model has exponential decay of correlations
uniformly down to zero temperature. However, these authors did not measure the correla-
tion length or the staggered susceptibility, so no direct test of the non-criticality at zero tem-
perature was made. Such a direct test has recently been made in ref. 9.
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"interface" or "SOS-type") model.(10-27) If this height model lies in its
"rough" phase—a question that has to be investigated on a case-by-case
basis—then its long-distance behavior is that of a massless Gaussian with
some (a priori unknown) "stiffness" K>0. The critical operators can then
be identified via the height mapping, and the corresponding critical
exponents can be predicted in terms of the single parameter K. In par-
ticular, if we know (by some other means) one of these exponents, then we
can deduce the rest.

Height representations thus give a means for recovering a sort of
universality for some (but not all) antiferromagnetic Potts models and for
understanding their critical behavior in terms of conformal field theory. All
the nonuniversal details of the microscopic lattice structure are encoded in
the height representation and in the stiffness parameter K. Given these,
everything can be understood in terms of the universal behavior of massless
Gaussian fields.

The plan of this paper is as follows: In Section 2 we present briefly the
general theory of height representations and then work out in detail the
case of the 3-state square-lattice Potts antiferromagnet. Our presentation is
based on the work of Henley and collaborators,(19,20,23,24,26,27) supple-
mented by a few minor innovations of our own. In the remainder of the
paper, our goal is to test, by Monte Carlo simulation, the critical exponents
predicted by Burton and Henley(26) for the three relevant operators in the
3-state square-lattice Potts antiferromagnet at zero temperature. In Sec-
tion 3 we describe our simulations, and in Section 4 we analyze the data.
In Section 5 we summarize our conclusions.

2. HEIGHT REPRESENTATIONS

Many two-dimensional models with zero-temperature critical points
can be mapped onto a "height" model: these include the triangular-lattice
Ising antiferromagnet,(11,12) the triangular-lattice spin-S Ising antiferro-
magnet(24) the 3-state square-lattice Potts antiferromagnet,(10,13,26) the
3-state Kagome-lattice Potts antiferromagnet,(16,20) the 4-state triangular-
lattice Potts antiferromagnet,(27) the 4-state Potts antiferromagnet on the
covering lattice of the square lattice,(19,20) a constrained 4-state Potts anti-
ferromagnet on the square lattice(26), a special 6-vertex model,(20) and
various dimer models(14,15,23,25) and fully packed loop models.(17,18,21,22)

Here we shall explain briefly the basic principles underlying the construc-
tion of such mappings and their use to extract critical exponents. We shall
then work out in detail the case of the 3-state square-lattice Potts antiferro-
magnet.
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2.1. General Theory

The first step is to define a map assigning to each zero-temperature
spin configuration {<j(x)} a corresponding microscopic height configura-
tion {h(x)}. This height rule is usually defined by local increments, i.e. one
prescribes the change Ah = h(y) — h(x) in going from a site x to a neigh-
boring site y in terms of the spin variables <r(x) and a(y). For such a rule
to be well-defined, one must verify that in all cases the net increment Ah
around any closed loop is zero.6 The height variables h(x) lie in some
discrete set H c RD (for some suitable dimension D), which we call the
height lattice.

The next step is to identify the so-called ideal states: these are ground-
state configurations (or families of configurations) of the original spin
model whose corresponding height configurations are macroscopically
"flat" (i.e., have zero net slope) and which maximize the entropy density (in
the sense of maximizing the number of ground states that can be obtained
from the ideal states by local modifications of the spins). We label each
ideal state by its average height h e RD, and we define the ideal-state lattice
J c RD to be the set of all average heights of ideal states. The equivalence
lattice

£={a e R D : a + J = J} (2.1)

is the subgroup of RD summarizing the underlying periodicity of ./.
We now guess that, in typical configurations of the spin model, the

lattice is subdivided into reasonably large domains in which the spin con-
figuration closely resembles one of the ideal states. It follows that typical
configurations of the height model are given by domains in which the
height h(x) exhibits small fluctuations around one of the values in the
ideal-state lattice. We therefore expect that a suitably defined coarse-
grained height variable h(x) will take values in or near the ideal-state
lattice J, except at boundaries between domains. The long-wavelength
behavior of the height model is thus postulated to be controlled by an
effective coarse-grained Hamiltonian of the form
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where we have made explicit the components of the macroscopic height
h = (h1 ,h2 , . . . ,hD) . The gradient term in (2.2) takes into account the

6 In fact, this property usually holds for free boundary conditions but not for periodic bound-
ary conditions. We shall hereafter neglect this latter subtlety, by imagining that we are work-
ing always in infinite volume.



entropy of small fluctuations around the ideal states; the second term is the
so-called locking potential, which favors the heights to take their values
in J. We then expect that there exists some constant Kr such that for
K<Kr (resp. K>Kr) the locking potential is irrelevant (resp. relevant) in
the renormalization-group sense. Thus, if K<Kr our surface model is
"rough" and its long-wavelength behavior can be described by a massless
Gaussian model(28,20) with D components:

7 Note that the only alternatives for the spin model are criticality and long-range order. Thus,
if there exists a height representation, the original spin model cannot be disordered at zero
temperature.

for |x — y| » 1; in this case, the original zero-temperature spin system is
critical. If, on the other hand, K>Kr , then the surface model is in its
"smooth" phase, exhibiting long-range order

and bounded fluctuations around this ordered state:

Correspondingly, the spin system is "locked" into small fluctuations around
one of the ideal states. At K = Kr the surface model undergoes a roughening
transition.7

Let us note, finally, that a given ideal state can be represented by
many different average heights h e J. More precisely, suppose that in some
domain we have a particular ideal state X and that its average height is
h0 e J. Now let us pass through various other domains of the lattice, com-
ing back finally to a domain in which the ideal state is again X. We will
find the average height in this latter domain to lie in the set h0 + R, where
R is a particular subgroup of & that we call the repeat lattice; we will also
find, conversely, that whenever we enter a domain in which the average
height lies in h0 + R, that domain is in ideal state X. It follows that the
ideal states are in one-to-one correspondence with the cosets J /R .

The coarse-grained correlation functions of local operators in the spin
language can be understood in terms of the correlation functions of local
operators of the coarse-grained heights. The important point is that these
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latter operators should have the periodicity of the repeat lattice R. This
means that the Fourier expansion of such an operator O,
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On the other hand, two wavevectors whose difference belongs to the
reciprocal lattice of the equivalence lattice,

give rise to vertex operators exp[ iG-h(x)] having identical long-distance
behavior. The vertex operators of the height model are thus in one-to-one
correspondence with the cosets R°/E° ~ ( E / R ) ° .

Now, provided that the height model is in the rough phase ( K < K r ) ,
the correlation functions of the vertex operators exp[iG-h(x)] are given by

It follows that the critical behavior of the operator O will be given by the
most relevant vertex operator exp[iG • h(x)] appearing in its Fourier
expansion with a nonzero coefficient:

where

(The scaling dimension is xo = 7/o/2, and the operator is relevant in case
the renormalization-group eigenvalue d — xo = 2 — xo is > 0.) This formula
implies that we can write all the critical exponents in terms of a single
parameter K. If one exponent is known, then all of them are.

In particular, the locking potential Vlock has the periodicity of the
ideal-state lattice J; its Fourier expansion (2.6) has contributions only

contains only wavevectors belonging to the reciprocal lattice of the repeat
lattice,



from wavevectors G belonging to E°. Let as« be the length of the smallest
nonzero vector in E°. Now, the roughening transition occurs exactly where
the locking potential is marginal, i.e., where nvlock =4. It follows that

2.2. Three-State Square-Lattice Potts Antiferromagnet

The height representation of the 3-state square-lattice Potts antiferro-
magnet at zero temperature is very simple.(10,26) Let the Potts spins a(x)

8 The height h itself is ill-defined as a field in dimension d < 2 , due to infrared divergences. But
gradients Vh, VVh,... are well-defined.
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If K<Kr, the locking potential is irrelevant, with scaling dimension

It induces corrections to scaling ~L2 Xvlock, where L is a suitable length
scale.

In addition to vertex operators exp[iG • h (x) ] , there is another type of
local operator that makes sense in the massless Gaussian model: powers of
gradients of h.8 In particular, the operator (Vh) 2 n has scaling dimension

and hence r j ( v h ) 2 n = 4n. It follows that all these operators are irrelevant,
except the operator (Vh)2 , which is marginal. Since these operators respect
the lattice symmetries, they can appear in the effective Hamiltonian and
thereby induce corrections to scaling. The leading such operator is (Vh)4,
with scaling dimension x(Vh)4 = 4; it induces corrections ~L2 - x ( 7 h ) 4 = L - 2 .

Assuming that we have not overlooked any irrelevant operators that
could appear in the effective Hamiltonian, we conclude that the leading
corrections to scaling behave as L - A , with

We remark, finally, that the height representation can also be applied to
these models at nonzero temperature. In that case one must consider also the
fugacity of defects: that is, of places where the zero-temperature constraints
are violated.(20,27) Very often the defect fugacity is a relevant operator.
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Fig. 1. Ideal-state lattice J for the 3-state square-lattice Potts antiferromagnet. The symbols
above the graph indicate the ideal states of the spin model: 0/12 means that the spins on the
even sublattice are all equal to 0 and that the spins on the odd sublattice are chosen randomly
between the values 1 and 2. The numbers below the graph indicate the average height for the
given ideal state; this height is determined modulo 6.

take values in the set {0, 1,2}. The microscopic height variables h(x)
are then assigned as follows: At the origin we take h ( 0 ) = 0, 4, 2 (mod 6)
according as <r(0) = 0, 1, 2; this ensures that

We then define the increment in height in going from a site x to a nearest
neighbor y by

This is well-defined (in free boundary conditions) because the change Ah
around any plaquette is zero.9 It follows from (2.16) and (2.17) that

for any site x = ( x 1 , x 2 ) . In particular, the height h(x) is uniquely deter-
mined mod 6 once we know the spin value a(x) and the parity of x, and
conversely. The height lattice H is clearly equal to Z.

There are six ideal states, given by 0/12 (spins on the even sublattice
all equal to 0, spins on the odd sublattice chosen randomly between 1 and 2)
and its permutations.10 In an ideal state, the height is constant on the
ordered sublattice and fluctuates randomly + 1 around this level on the dis-
ordered sublattice. The average height of an ideal state is thus equal to its
height on the ordered sublattice; it then follows from (2.18) that there is a
one-to-one correspondence between ideal states and average heights mod 6
(see Fig. 1).11 The ideal-state lattice J is thus also Z, as is the equivalence

9 If four numbers + 1 add up to 0 mod 3, they must necessarily be two + 1's and two — 1's,
hence add up to 0.

10 States like 0/1 are not ideal states because they do not have maximal entropy density.
11This fact was proven, in a different way, by Burton and Henley [ref. 26, Appendix B.2],
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12 Burton and Henley(26) chose a slightly different definition of this operator: Pstagg( x) =
( 1/4)(- 1 )x1+x2 Zy nnn of x Sd(x),dy)•
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Table 1. Critical Operators for the 3-State Antiferromagnetic Potts Model
on the Square Lattice at Zero Temperature"

Operator

Mstagg

Mu

pstagg

G

+ 1/3

±2rt/3
±p

n

1/3
4/3

3

y•/v = 2-n

5/3
2/3
-1

Numerical Result

1.66621 ±0.00035
0.6705 +0.0022

-0.75 ±0.12

"The last column indicates the results from our Monte Carlo simulation (Section 4).

lattice E, while the repeat lattice R is 6Z. The corresponding reciprocal
lattices are E° = 2rcZ and R° = (n/3) Z.

There are three relevant operators (in the renormalization-group
sense) appearing in this model (see Table 1):(10,26)

where we have represented the Potts spin at site x = ( x 1 , x2) by a unit vec-
tor in the plane,

The first operator is the staggered magnetization; the staggering corre-
sponds to a momentum kstagg = (n,n). The second operator is the uniform
magnetization. The third operator is a staggered sum over diagonal next-
nearest-neighbor correlations (i.e., over y with |y — x| =-y/2); we call it the
staggered polarization. In an ideal state, it takes the average value +1
(resp. —1) according as it is the even (resp. odd) sublattice that is
ordered.12

We can relate these observables directly to the microscopic height
variables h(x) by exact identities. For the vertex operators with G =
+ 7T/3, ±27i/3, ±n we have



738

Remark. It is also of interest to define almost-local operators living
on plaquettes. Let x be a lattice site, and let D(x) = { ( x 1 , x 2 ) , (x1 + 1, x2),
(x1 + 1, x2+ 1), ( x 1 , x2 + 1)} be the plaquette whose lower-left corner is x.
We then define the average height h(x) over that plaquette as

It is easy to see that h(x) takes values in Zu(Z + (1/2)): namely, it takes
an integer (resp. half-integer) value if there are three (resp. two) distinct
spin values a(y) on the plaquette O(x). Indeed, the value of h(x) is
uniquely determined mod 6 by the spin content of the plaquette: see Fig. 2.
Finally, for two adjacent plaquettes D(x) and D(x'), we have

13Proof. Next-nearest-neighbor sites x, y always satisfy h(y)—h(x)=0 or +2: the former
case occurs when a(x) = a(y), and the latter when <j(x)=£<j(y). It follows that

Salas and Sokal

Here (2.24) and (2.25) follow immediately from (2.18a) and (2.18b), respec-
tively, while (2.23) follows by multiplying these two and taking the com-
plex conjugate. Of course, the strictly local operator (2.25) is trivial, but we
can define a nontrivial almost-local operator with the same (G = rc) long-
distance behavior:

for diagonal next-nearest-neighbor sites x, y.13 It follows that G = n
corresponds to the staggered polarization.

Now multiply this by (2.25).



where we have labelled the sites around the plaquette D(x) as x,x',x",
x'" in cyclic order, and in (2.31) we have used the shorthand A(n)= ±1
according as n = ± 1 mod 3.

We can now read off the predictions for critical exponents. The
staggered magnetization corresponds to G = n/3 = aR° (this is the smallest
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Fig. 2. The average height h ( x ) on a plaquette is uniquely determined modulo 6 by the spin
content of that plaquette: 0/12 means, for example, that the two spins belonging to the even
sublattice are both equal to 0, while the two spins belonging to the odd sublattice are 1
and 2.

The upshot of this construction is that, because h(x) takes half-integral as
well as integral values, vertex operators exp[iGh(x)] and exp[iG'h(x)] are
equivalent only if G = G' mod 4n, rather than mod 2n as before; so we can
define operators up to |G| = 2n rather than only |G| =n. (However, as will
be seen below, all these "extra" operators are irrelevant.) We have



nonzero vector in R°), hence r;Mstagg = n l (18K). On the other hand, den Nijs
et al.(10) and Park and Widom(29) obtained the exact value rjMstagg = 1/3
by means of a mapping to the 6-vertex model. It follows that the height
model corresponding to the 3-state square-lattice Potts antiferromagnet at
zero temperature has stiffness K = n/6. (In particular, we have K<Kr = n/2,
so the height model lies in its rough phase.) By the usual scaling law we
obtain the susceptibility exponent (y/v)stagg = 2 — rjM s t a g g =5/3. This value
has been numerically verified by several authors.(30,31,6,7)

The uniform magnetization corresponds to G = 2n/2 = 2a^,. (In this
model the ideal states have a nonzero net magnetization, which, however,
is the same for A/BC and BC/A; the uniform magnetization is thus periodic
on the ideal-state lattice with period 3.) It follows that T/Mu = 4;/Mstagg = 4/3
and (y/v)u = 2 — ̂ Mu = 2/3.(10) It is interesting that the uniform magne-
tization is predicted to have a divergent susceptibility in this antiferro-
magnetic model. We are not aware of any numerical test of this prediction
in the literature.

The staggered polarization corresponds to G = n = 3a^>. We have
nvstagg = 9lMstagg = 3 and hence ( y / v ) s t a g g = -1.(26) This means that the
"susceptibility" for this operator does not diverge, but tends to a finite
value with a power-law correction ~L-1 (where L is the linear lattice
size). This prediction has not, to our knowledge, been checked numerically
in the literature.

These are the only relevant vertex operators in the model. Indeed,
a vertex operator exp[iG -h(x)] is relevant if and only if rj = G2/(2nK) <4;
or, writing G = nam« with n integer, we need |n| <^/8nK/aXo. The values
K=n/6 and a^,, = n/3 then imply that we must have \G\<2n/^/3, or
n|<y12.

The equivalence lattice has lattice spacing a# = l, so that the wave-
vector corresponding to the locking potential is G = 2n = 6a^a and hence
'/vlock = 36?/Mstagg= 12 > 4. So, Vlock is a (strongly) irrelevant operator.

Remark. The foregoing predictions contain, at first glance, a serious
paradox. The correlation functions of the microscopic staggered and
uniform magnetizations,

obviously satisfy
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How, then, can Gstagg(x) decay at large |x| like |x|-1/3 while Gu(x) decays
like |x| -4/3? The answer, presumably, is that the correlation functions
contain both terms:(10)

14 In order to get the maximum additional decay (namely, two powers of \x\), it is necessary
to smear over an m x n block with m and n both even.

15 By contrast, the WSK algorithm for q = 3 is known to be nonergodic on periodic 3m x 3n
square lattices whenever m and n are relatively prime.(32) Other cases are open questions.

Three-State Square-Lattice Potts Antiferromagnet 741

It is only when one passes to coarse-grained correlation functions, by
smearing over several nearby lattice sites, that the oscillatory terms are
replaced by much-more-rapidly decaying remnants, leaving14

A similar cancellation of oscillatory terms occurs, of course, when one
looks at the susceptibilities.

3. NUMERICAL SIMULATIONS

In order to test all these predictions, we have carried out a Monte
Carlo simulation of the 3-state square-lattice Potts antiferromagnet at zero
temperature, on periodic L x L lattices with L ranging from 4 to 1024. We
made our simulation using the Wang-Swendsen-Kotecky (WSK) cluster
algorithm, (30,31) which is ergodic at T=0 on any bipartite graph, and in
particular on a periodic square lattice whenever the linear lattice size L is
even(26,7) 15

For each lattice size, we made 106 measurements after discarding 105

iterations for equilibration. For L < 5 1 2 we performed a single long run
starting from the ordered state 0/1. For L = 1024 we made two independent
runs with different initial conditions, one starting in the ordered state 0/1
and the other starting in the ideal state 0/12 (each individual run was
of total length 6 x 105, with the first 105 iterations discarded); there was
no noticeable disagreement between the two sets of results. In units of
the longest autocorrelation time Tint,p2 (see below), our run length
corresponds to -1.3xl05T i n t measurements, and our discard interval
corresponds to -1.3 x 104rint iterations. This run length is sufficient
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to get a high-precision determination of both static and dynamic observ-
ables: we obtain errors of order < 0.2 % for the static observables and of
order <2% for the dynamic ones.16

Our program was written in FORTRAN. The runs for L<512 were
carried out on a Pentium 166 machine: each WSK iteration took
approximately 5.7 L2/usec. The runs for L= 1024 were carried out on an
IBM RS-6000/370 workstation, taking 8.5 L2 u. sec per iteration. The total
CPU time used in this project was approximately 1 month on the former
machine plus 4 months on the latter.

The "zero-momentum" observables

all have mean zero. We have therefore measured their squares

16 Our discard interval might seem to be much larger than necessary: 102Tint would usually be
more than enough. However, there is always the danger that the longest autocorrelation
time in the system may be much larger than the longest autocorrelation time that one has
measured, because one has failed to measure an observable having sufficiently strong overlap
with the slowest mode. (Here is a minor example of this effect: the authors of refs. 6 and 7
reported T i n t < 5 because they failed to consider our slowest observable Pstagg, which has
autocorrelation time Tint,p2 ~8.) As an undoubtedly overly conservative precaution
against the possible (but unlikely) existence of such a (vastly) slower mode, we decided to
discard approximately 10% of the entire run. This discard amounts to reducing the
accuracy on our final estimates by a mere 5%.

Note also that while we have here performed our simulations only at zero temperature
(fS = I), the authors of refs. 6 and 7 employed a closely-spaced set of temperatures ranging
from very high temperature (B = 2.0, £ ~ 5 ) to very low temperature (B = 6.0, E~20000)
and found the autocorrelation times of JM2

tagg and the energy to be uniformly small. This
constitutes further evidence against the existence of an undetected extremely slow mode.
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as well as the "smallest-nonzero-momentum" observable associated to
Mstagg(x):

Here V=L2 is the volume of the system, the sum £a is over the three
possible values of the Potts spins, and the sum Z<x,y> nnn is over all pairs
of diagonal-next-nearest neighbors x, y (each pair taken only once). The
staggered and uniform susceptibilities are given by

where

The results of our simulations for the mean values of all these static observ-
ables are displayed in Table II.

We have also measured the integrated autocorrelation time associated
to each of the basic observables, using a self-consistent truncation window
of width 6zint [ref. 33, Appendix C]. We find that the largest autocorrela-
tion time (of the observables we measured) corresponds to P2

tagg, though

and the "susceptibility" associated to the observable Pstagg is

Finally, the second-moment correlation length is defined by



744 Salas and Sokal

Table II. Mean Values of the Static Observables for the 3-State
Square-Lattice Potts Antiferromagnet at Zero Temperature

L

4
8

16
32
64

128
256
512

1024

Xstagg

8.5576 + 0.0024
27.7671 ± 0.0120
88.8206+ 0.0441

282.8085+ 0.1477
897.3520+ 0.4776

2851. 2642 ± 1.5484
9056.7475 ± 4.8888

28731.6260 + 15.5273
91167.3235+49.2042

Xu

1.0443 ±0.00 10
1.8614 + 0.0028
3.1537 + 0.0058
5.2052±0.0105
8.4362 + 0.0179

13.5899 ±0.0296
21.8141 ±0.0479
34.7753 + 0.0767
55.2604 ±0.1 240

XPstagg

2.4486 ± 0.0076
2.3888 + 0.0124
2.2882 + 0.0128
2.2464 ±0.0 126
2.21 10 ±0.0124
2. 1826 ±0.0 120
2. 1852 ±0.0 122
2.1480 + 0.0116
2. 1806 ±0.0 120

E

2.5 127 ±0.0023
5.1306 + 0.0055

10.2497 ±0.01 10
20.4422 ±0.02 19
40.6662 + 0.0433
8 1.4388 ±0.0880

162.8235 ±0.1 745
325.0478 ± 0.3449
650.0264 + 0.6924

all of them are roughly of the same order of magnitude (Table III). None
of these autocorrelation times diverges as L grows; they tend to a constant.
We have fitted the autocorrelation time for each observable to a constant
(using methods to be described at the beginning of the next section). Our
best fits are:

We conclude that the WSK algorithm for this model at T=0 has no criti-
cal slowing-down:(6,7) rint <8 uniformly in L.

Table I I I . Mean Values of the Dynamic Observables for the 3-State
Square-Lattice Potts Antiferromagnet at Zero Temperature

L

4
8

16
32
64

128
256
512

1024

2.487 ±0.020
4.073 ±0.041
4.41 7 ±0.046
4.488 + 0.047
4.483 ±0.047
4.587 + 0.049
4.558 + 0.049
4.515 ±0.048
4.512 + 0.048

rint, M2

1.525 ±0.0 10
3.240 ±0.029
4. 154 ±0.042
4.628 ± 0.049
4.803 ± 0.052
4.903 + 0.054
4.908 + 0.054
4.889 ± 0.054
4.986 ± 0.056

Tint, P2
tagg

5.038 ±0.057
7.456 ±0.101
7.845 + 0.109
7.765 + 0.107
7.863 ±0.1 10
7.528 ±0.1 03
7.686 + 0.106
7.377 ±0.100
7.638 + 0.105

Tint, Pstagg

3.330 + 0.030
4.032 + 0.041
3.850 + 0.038
3.826 + 0.037
3.803 ±0.037
3.855 ±0.038
3.816 ±0.037
3.752 ±0.036
3.776 + 0.037



4. DATA ANALYSIS

We perform all fits using the standard weighted least-squares method.
As a precaution against corrections to scaling, we impose a lower cutoff
L > Lmin on the data points admitted in the fit, and we study systematically
the effects of varying Lmin on both the estimated parameters and the x2. In
general, our preferred fit corresponds to the smallest Lmin for which the
goodness of fit is reasonable (e.g., the confidence level17 is > 10-20%) and
for which subsequent increases in Lmin do not cause the x2 to drop vastly
more than one unit per degree of freedom.

4.1. Staggered Susceptibility

The theoretically expected behavior of the staggered susceptibility at
criticality (i.e., at zero temperature) is

with (y /v) s t a g g = 5/3; here A is a correction-to-scaling exponent and the dots
indicate higher-order corrections to scaling. Based on the numerical results
of refs. 6 and 7, we do not expect large corrections to scaling on this
observable.

We tried first to extract the leading term in (4.1) by fitting our data
to a simple power-law Ansatz xstagg = AL(y/v)stagg. This fit is reasonable
already for Lmin = 32 (X

2 = 4.34, 4 DF, level = 36%), but our preferred fit
is Lmin = 128:

with x2 = 1.31 (2 DF, confidence level = 52%). This result is only 1.5
standard deviations away from the expected value 5/3.

We then considered the Ansatz (4.1), imposing the leading exponent
(y/v)stagg = 5/3 and trying various values for the first correction-to-scaling
exponent A. We are able to find reasonably good fits already for Lmin = 4,
provided we take A in the range 1.50< A < 1.76. We therefore performed

17 "Confidence level" is the probability that x2 would exceed the observed value, assuming that
the underlying statistical model is correct. An unusually low confidence level (e.g., less than
5 %) thus suggests that the underlying statistical model is incorrect—the most likely cause
of which would be corrections to scaling.
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with x2 = 7.30 (6 DF, level =29%).
It is interesting to note that the exponent 5/3 is included in the interval

(4.3). If this is the true behavior, it means that the leading correction to
pure power-law behavior in the staggered susceptibility is merely an
additive constant:

with x2 = 0.35 (1 DF, level =55%). This result is 1.75 standard deviations
away from the theoretical prediction.

The large deviations from pure power-law behavior for L < 256 can be
explained as an effect of corrections to scaling. Indeed, if we consider the
Ansatz (4.5) with (y/v)u = 2/3 imposed and with just one correction-to-
scaling term, we can obtain sensible fits even for Lmin = 4. But in this case,
in contrast to the preceding one, the range of acceptable A values is much
narrower: 0.655 < A < 0.735. A three-parameter nonlinear weighted least-
squares fit to A, B and A, with Lmin = 4, yields
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a three-parameter nonlinear weighted least-squares fit to simultaneously
estimate A, B and A. Using Lmin = 4, we obtain

with x2 = 7.78 (7 DF, level =35 %). Such a correction can be interpreted
as a mere lattice artifact, not necessarily arising from any irrelevant
operator of the continuum theory.

4.2. Uniform Susceptibility

The theoretically expected behavior for the uniform susceptibility is

with (y/v)u = 2/3. The simple power-law Ansatz gives a decent fit only for
Lmin = 256, yielding

with x2= 1.96 (6 DF, level =92%). In this case the value A =2/3 is two
standard deviations away from the above estimate, but the absolute dis-
crepancy is small (less than 0.03) and can plausibly be explained as an



with x2 = 7.15 (7 DF, level =41 %).
The results (4.3)/(4.4) and (4.7)/{4.8), taken together, suggest that

there are no irrelevant operators (having the symmetries of the
Hamiltonian) with zl<5/3 and that the leading corrections to scaling in
both Xstagg and Xu are lattice artifacts. This behavior is consistent with the
prediction (2.15) that the leading irrelevant operator is (Vh)4, with A =2.

4.3. Staggered Polarization

The finite-size-scaling behavior of Xpstagg is expected to be

with A = 1. We tried first to ignore the correction-to-scaling term and fit
the data to a constant. The fit is not very good: even for Lmin= 128 we
have x2 = 6.68 (3 DF, level = 8 %), with the estimate

Moreover, the confidence level gets slightly worse for Lmin = 256, 512.
We next fit to (4.9) with A = 1. For Lmin = 8 one already gets a fair

(though not spectacular) fit:

with x2 = 9.63 (6 DF, level = 14%). However, the confidence level does not
improve significantly for larger Lmin.

We also tried fits to (4.9) with various fixed values of A / 1. We were
able to get reasonable fits for Lmin = 8, if we take 0.50 < A < 1.05. We then
tried a three-parameter fit to obtain estimates for Xp s tagg(°o), B and A. Our
preferred fit corresponds to Lmin = 8:

with x2 = 6.39 (5 DF, level =27%). The discrepancy between the above
result and the predicted value A = 1 is only two standard deviations; it
might be due to higher-order corrections.

effect of higher-order corrections to scaling. Indeed, the uniform suscep-
tibility can be fitted well (with Lmin = 4) as a pure power law plus an
additive constant:
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with x2 = 8.00 (6 DF, level =24%). Of course, an equally good fit can be
obtained using a correction term L~* with many other values of J'. So we
do not claim to have verified the Ansatz (4.13), but only to have shown
that the data are compatible with it, and in particular are compatible with
the predicted leading exponent A = 1.

4.4. Correlation Length

Finally, we consider the scaling behavior of the second-moment
correlation length, which is expected to be of the form

we obtain a reasonable fit for Lmin = 4:

As a matter of fact, we expect the next correction to scaling to be of
order L-3 (namely, the leading correction to scaling L-2 multiplied by the
leading nonanalytic contribution L-1 to this observable). If we fit our data
to the Ansatz
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with p = 1.
First, we tried to estimate the power p by a simple power-law fit. This

gives a good result for Lmin = 128:

with x2 = 0.48 (2 DF, level = 79 %). This estimate is only 1.8 standard
deviations away from the expected value p = 1, and the very small dis-
crepancy (less than 0.0013) can be explained as an effect of corrections to
scaling.

If we look at Table IV, we see that the ratio £/L increases from L = 4
to L = 8, decreases monotonically from L = 8 to L = 64, and then oscillates
due to statistical noise for L > 64. Thus, if we want to study the L ->I
limit of this quantity without including correction-to-scaling terms, we
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Table IV. Values of the Ratio E/L
for the 3-State Square-Lattice Potts

Antiferromagnet at Zero Temperature

L

4
8

16
32
64

128
256
512

1024

E/L

0.62818 + 0.00057
0.64 133 ±0.00069
0.64061 +0.00069
0.63882 ± 0.00068
0.63541 ±0.00068
0.63624 ± 0.00069
0.63603 ±0.00068
0.63486 + 0.00067
0.63479 + 0.00068

with x2 = 0.0051 (1 DF, level =94%).
On the other hand, if we want to study corrections to scaling, we must

use at least some of the data with L < 64. The non-monotonic behavior for
4 < L < 64 indicates that, to obtain a reasonable fit over this whole interval,
we would need at least two correction-to-scaling terms with amplitudes of
opposite sign. An Ansatz with only one correction-to-scaling term could, at
best, fit the data with Lmin > 8, and very likely not even that.

Indeed, if we fit the data to the Ansatz (4.15) with p = 1 and only one
correction-to-scaling term ~ L - A , we find that reasonably good fits to the
two parameters x* and B are obtained when A is fixed in the interval
0.25 <A< 0.60 with Lmin = 8. (For Lmin = 4 we were unable to find any
good fit, as expected.) We next tried a three-parameter fit to estimate
simultaneously x*, B and A. The first reasonably good fit corresponds
again to Lmin = 8, and the estimates are

with x2 = 3.77 (4 DF, level =44%). However, our preferred fit corresponds
to Lmin = 512,

expect to get a reasonable fit only for Lmin > 64. Indeed, if we fit our data
to a constant x*, the first decent fit occurs for Lmin = 64, giving
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with x2 = 5.95 (4 DF, level =20%). For Lmin>32, we do not get any sen-
sible result (A and B become very large, along with their error bars); this
is due to the fact that most of these data correspond to the regime L > 64
where the corrections to scaling are submerged under the statistical noise.
Let us remark that the value of x* given in (4.20a) is only 1.6 standard
deviations away from the one estimated by Ferreira and Sokal(7) using
extrapolation techniques at nonzero temperature:

If we want to fit all the data (i.e., take Lmin = 4), we should introduce
at least two correction-to-scaling terms. From the definition (3.11), we
expect two types of corrections to scaling for the correlation length: one of
order L - 5 / 3 coming from the numerator [cf. (4.4)], and another of order
L-2 coming from the subleading terms in the sine. Furthermore, we might
also expect an effective constant-term "correction" of order L - 1 , anal-
ogously to what happened for the two susceptibilities. Thus, our next
Ansatz would be

with x2 = 9.35 (5 DF, level =10%). However, a better fit is obtained with
Lmin = 16, giving
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If the coefficients B and C have different signs, the contribution of these
two terms could be mimicked (in the range of monotonicity, Lmin >8) by
a single correction term with an exponent ^eff< 1, where Aeff increases
towards 1 as Lmin -> oo. Indeed, this scenario is in good agreement with our
results (4.19b)/(4.20b). We therefore tried a three-parameter fit directly to
the Ansatz (4.22). Our preferred fit corresponds to Lmin = 4:



with x2 = 7.01 (6 DF, level = 32 %). This result certainly does not prove
that the Ansatz (4.22) is correct, since many other pairs of correction-to-
scaling exponents could give an equally good fit; but it does display a
satisfying agreement.

5. CONCLUSIONS

In this paper we have studied the 3-state square-lattice Potts antiferro-
magnet at its zero-temperature critical point. Using the mapping onto a
massless Gaussian model(26) together with the known exact value of the
staggered-susceptibility critical exponent,(10,29) one can predict(26) the rele-
vant operators and their corresponding critical exponents. We have
studied, by Monte Carlo simulation, the three predicted relevant operators
—the staggered magnetization, the uniform magnetization, and the
staggered polarization—as well as the second-moment correlation length.
For the two divergent susceptibilities (corresponding to the two magnetiza-
tions) we have obtained, by a simple power-law fit, the expected critical
exponents to within two standard deviations The tiny remaining discrepan-
cies can be understood as due to small additive corrections to scaling.

In order to fit Monte Carlo data in a meaningful way beyond the lead-
ing term, it is helpful—and perhaps essential—to have a theoretical Ansatz
concerning the functional form of the corrections to scaling. (This is espe-
cially important when there are multiplicative as well as additive
logarithmic corrections due to the presence of a marginally irrelevant
operator.(34)) Using the mapping of our Potts model onto a massless
Gaussian model, we have seen that there are no marginal operators, so we
expect simple additive power-law corrections to scaling ~ L - A . Looking at
all the possible operators that could appear in the Gaussian model, we
have been able to predict that A = 2.

However, the numerical determination of A is not at all simple, as we
have to drop the (infinitely many) higher-order corrections ~L - A ' with
A' > A. Only when the higher-order terms are negligible with respect to the
first correction L-A is one able to get an accurate estimate for A. This is
what happens for the staggered and uniform susceptibilities. But in those
cases the estimated values of A do not correspond to the predicted A = 2,
but rather to the contribution of the finite background coming from lattice
artifacts. The small discrepancy between the estimated value of A and the
expected value coming from the background can be understood in terms of
higher-order corrections ~ L - 2 . A similar situation occurs for the staggered
polarization: dropping higher-order corrections, the estimate for A lies two
standard deviations away from the prediction(26) A = 1. We can account for
this small discrepancy by introducing a second term ~L - 3 .
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The correlation-length case is more involved, as a naive fit to obtain
A (i.e., dropping all higher-order corrections) gives A = 0.84 + 0.32. This
number could be understood as an effective correction-to-scaling exponent
Aeff. Furthermore, the shape of the L-dependence of £/L can be understood
only if we assume that at least two correction-to-scaling terms (with coef-
ficients of opposite sign) are important. Even though our statistics are high
enough to detect the existence of corrections to scaling, they are insufficient
to get accurate estimates when two correction terms (of unknown
exponents) are taken into account. As a matter of fact, our data are com-
patible with a two-term correction AL - * + B L - A for a wide range of pairs
(A, A'}: this range includes the theoretical prediction (1, 5/3).

In summary, it is important to distinguish between results that can
(with reasonable reliability) be deduced from the numerical data and
theoretical predictions that are verified merely to be compatible with the
data. Typically, leading critical exponents of divergent quantities fall into
the former category, while correction-to-scaling exponents (as well as lead-
ing critical exponents of non-divergent quantities) fall into the latter.
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